
Solving Tournaments by Binary Trees

Paul Harrenstein

Ludwig-Maximilians-Universität, München

Computational Social Choice, 12th December 2007

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 1 / 29

Introduction

Introduction

• Determining a winner by an fixed schedule or agenda

• Example: Knock-out tournament

• Importance of a drawing

• Majority voting

• Strategic voting behaviour

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 2 / 29

Introduction

Overview

• Majority dominance graphs

• Social choice correspondences vs. social choice functions

• Restriction to tournaments

• Binary voting procedures

• Solving tournaments using binary voting trees

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 3 / 29

Binary Voting Procedures

Binary Voting Procedures

• Amendment procedure: Two alternatives are paired for majority vote, the
defeated proposal being eliminated as a possible decision, the surviving
proposal is then paired with a third alternative at the second vote, and so
forth. The proposal that survives the final vote is the decision.

• Successive procedure: The first proposal is voted up or down on a majority
basis: if voted up, it is the decision, otherwise, the second proposal is voted
up or voted down and so forth. If the first m − 1 proposals are voted down,
the remaining proposal is the decision.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 4 / 29

Binary Voting Procedures

Sincere Voting under Amendment Procedure

Assumption: At each vote, each player votes for his most preferred alternative.

a b

c

d

e

d

e

a

b

c

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 5 / 29

Binary Voting Procedures

Sincere Voting under Successive Procedure

Assumption: At each vote, each player votes for a proposal if it is the proposal
he most prefers among those that have not yet been voted down.

Fact: Under successive procedure, the sincere voting decision may not elect
the Condorcet winner.

Proof: Voting order (a, b , c) and preference profile:

1 2 3
a b c
b a a
c c b

a is the Condorcet winner, but eliminated in the first round.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 6 / 29

Binary Voting Procedures

Sincere Voting under Successive Procedure

Assumption: At each vote, each player votes for a proposal if it is the proposal
he most prefers among those that have not yet been voted down.

Fact: Under successive procedure, the sincere voting decision may not elect
the Condorcet winner.

Proof: Voting order (a, b , c) and preference profile:

1 2 3
a b c
b a a
c c b

a is the Condorcet winner, but eliminated in the first round.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 6 / 29

Binary Voting Procedures

Sophisticated Voting under Successive Procedure

Example: Voting order (a, b , c) and preference profile:

1 2 3
a b c
b a a
c c b

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 7 / 29

Binary Voting Procedures

Sophisticated Voting under the Successive Procedure

Voting order (a, b , c, d, e)

a,b,c,d,e

a b,c,d,e

b c,d,e

c d,e

d e

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 8 / 29

Binary Voting Procedures

Sophisticated Voting under the Successive Procedure

Voting order (a, b , c, d, e)

a,b,c,d,e

a b,c,d,e

b c,d,e

c d,e

d e

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 8 / 29

Binary Voting Procedures

Sophisticated Voting under the Amendment Procedure

a1 a2

a3

a4

a1, a2, a3, a4

a1, a3, a4

a1, a4

a1 a4

a3, a4

a3 a4

a2, a3, a4

a2, a4

a2 a4

a3, a4

a3 a4

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 9 / 29

Voting Trees

Voting Trees

Definition: A binary voting tree Γ on A is a binary tree in which each terminal
node is associated with an alternative from A , each alternative in A occurring at
least once.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 10 / 29

Voting Trees

Voting Trees

Definition: A binary voting tree Γ on A is a triple (V ,R , φ) in which:

• (V ,R) is a binary tree on A ,

• φ : Z → A surjective, where Z is the set of terminal nodes.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 10 / 29

Voting Trees

Voting Trees

a b

c

d a

b

c d

Γ = ((((a, b), c), d), (a, (b , (c, d))))

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 10 / 29

Voting Trees

The Reduction Procedure

Definition: Let T be a tournament and Γ = (V ,R , φ) a binary voting tree on A .
Extend φ to φ∗ : V → A , such that for all v ∈ V :

φ∗(v) =

φ(v) if v ∈ Z
φ∗(v ′) if v ′, v ′′ are the children of v and φ∗(v ′) , φ∗(v ′′) implies φ∗(v ′) � φ∗(v ′′) in T

Then set fΓ(T) = φ∗(v0), where v0 is the root of Γ.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 11 / 29

Voting Trees

The Reduction Procedure

a b

c

d a

b

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 12 / 29

Voting Trees

The Reduction Procedure

b

a b

c

d a

b

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 12 / 29

Voting Trees

The Reduction Procedure

c

b

a b

c

d a

b

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 12 / 29

Voting Trees

The Reduction Procedure

c

c

b

a b

c

d a

b

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 12 / 29

Voting Trees

The Reduction Procedure

c

c

b

a b

c

d a

b c

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 12 / 29

Voting Trees

The Reduction Procedure

c

c

b

a b

c

d a c

b c

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 12 / 29

Voting Trees

The Reduction Procedure

c

c

b

a b

c

d

a

a c

b c

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 12 / 29

Voting Trees

The Reduction Procedure

a

c

c

b

a b

c

d

a

a c

b c

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 12 / 29

Voting Trees

The Reduction Procedure

a

c

c

b

a b

c

d

a

a c

b c

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 12 / 29

Voting Trees

Characterization of the Good Set

Theorem: Let Γ be a binary voting tree and T a tournament on A . Then,
fΓ(T) ∈ GO(T).

Proof: Paint all outcomes of GO(T) red and all those in A\GO(T) blue. By
definition of the Good set a � b, for every a ∈ GO(T) and every b ∈ A\GO(T),
i.e., every red alternative beats any blue alternative. Since, in the binary voting
tree there is at least one red terminal node—as every outcome appears at least
once—the final winner must be red. �

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 13 / 29

Voting Trees

Characterization of the Good Set

Theorem: Let Γ be a binary voting tree and T a tournament on A . Then,
fΓ(T) ∈ GO(T).

Proof: Paint all outcomes of GO(T) red and all those in A\GO(T) blue. By
definition of the Good set a � b, for every a ∈ GO(T) and every b ∈ A\GO(T),
i.e., every red alternative beats any blue alternative. Since, in the binary voting
tree there is at least one red terminal node—as every outcome appears at least
once—the final winner must be red. �

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 13 / 29

Voting Trees

Agenda Paradox

See whiteboard.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 14 / 29

Voting Trees

Computability by Binary Trees

Notation: Be π be a permutation of A and Γ = (V ,R , φ), then:
π(Γ) = (V ,R , π ◦ φ).

Definition: For A a set of alternatives, T a tournament and Γ a binary trees on
A define the social choice correspondence SΓ : T (A)→ 2A as:

SΓ(T) = {fπ(Γ)(T) : π a permutation of A }.

Definition: A social choice correspondence S is computable by binary trees if
for every set of alternatives A there is a binary voting tree Γ such that for all
tournaments T ∈ T (A):

S(T) = SΓ(T).

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 15 / 29

Voting Trees

Computability by Binary Trees

Notation: Be π be a permutation of A and Γ = (V ,R , φ), then:
π(Γ) = (V ,R , π ◦ φ).

Definition: For A a set of alternatives, T a tournament and Γ a binary trees on
A define the social choice correspondence SΓ : T (A)→ 2A as:

SΓ(T) = {fπ(Γ)(T) : π a permutation of A }.

Definition: A social choice correspondence S is computable by binary trees if
for every set of alternatives A there is a binary voting tree Γ such that for all
tournaments T ∈ T (A):

S(T) = SΓ(T).

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 15 / 29

Voting Trees

Computability by Binary Trees

Notation: Be π be a permutation of A and Γ = (V ,R , φ), then:
π(Γ) = (V ,R , π ◦ φ).

Definition: For A a set of alternatives, T a tournament and Γ a binary trees on
A define the social choice correspondence SΓ : T (A)→ 2A as:

SΓ(T) = {fπ(Γ)(T) : π a permutation of A }.

Definition: A social choice correspondence S is computable by binary trees if
for every set of alternatives A there is a binary voting tree Γ such that for all
tournaments T ∈ T (A):

S(T) = SΓ(T).

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 15 / 29

Voting Trees

The Simple Agenda

Definition: For each sequence of alternatives a1, . . . , an define the simple
agenda Γa1,...,an as follows:

• Γa1 = (a1),

• Γa1,...,an+1 = (an+1, Γa1,...,an).

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 16 / 29

Voting Trees

The Simple Agenda

Definition: For each sequence of alternatives a1, . . . , an define the simple
agenda Γa1,...,an as follows:

• Γa1 = (a1),

• Γa1,...,an+1 = (an+1, Γa1,...,an).

a4

a3

a2 a1

Γa1,a2,a3,a4

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 16 / 29

Voting Trees

The Simple Agenda

Definition: For each sequence of alternatives a1, . . . , an define the simple
agenda Γa1,...,an as follows:

• Γa1 = (a1),

• Γa1,...,an+1 = (an+1, Γa1,...,an).

Lemma: For any tournament, x ∈ GO(T) implies there is a complete path
beginning with x

Theorem: Let A = {a1, . . . , an} be a set of alternatives, Γa1,...,am be a simple
agenda on A . Then, for all tournaments T ∈ T (A):

GO(T) = SΓa1 ,...,am (T).

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 16 / 29

Voting Trees

Pareto Efficiency

Definition: An alternative a Pareto dominates another alternative b whenever:

• a %i b, for all i ∈ N

• a �i b, for some i ∈ N

An alternative is Pareto efficient if it is Pareto dominated by no alternative.

Fact: The Good set may contain Pareto dominated alternatives.

1 2 3
a d c
b a d
c b a
d c b

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 17 / 29

Voting Trees

Pareto Efficiency

Definition: An alternative a Pareto dominates another alternative b whenever:

• a %i b, for all i ∈ N

• a �i b, for some i ∈ N

An alternative is Pareto efficient if it is Pareto dominated by no alternative.

Fact: The Good set may contain Pareto dominated alternatives.

1 2 3
a d c
b a d
c b a
d c b

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 17 / 29

Voting Trees

Monotonicity

Definition: A social choice correspondence S is monotonic if for any a ∈ A and
all tournaments T and T ′ on A such that:

• x � y iff x �′ y, for all x, y ∈ A with x , a and y , a, and

• a � x implies a �′ x, for all x ∈ A ,

we have a ∈ S(T) implies a ∈ S(T).

b c

a

d e

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 18 / 29

Voting Trees

Monotonicity

Definition: A social choice correspondence S is monotonic if for any a ∈ A and
all tournaments T and T ′ on A such that:

• x � y iff x �′ y, for all x, y ∈ A with x , a and y , a, and

• a � x implies a �′ x, for all x ∈ A ,

we have a ∈ S(T) implies a ∈ S(T).

b c

a

d e

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 18 / 29

Voting Trees

Monotonicity

Definition: A social choice correspondence S is monotonic if for any a ∈ A and
all tournaments T and T ′ on A such that:

• x � y iff x �′ y, for all x, y ∈ A with x , a and y , a, and

• a � x implies a �′ x, for all x ∈ A ,

we have a ∈ S(T) implies a ∈ S(T).

b c

a

d e

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 18 / 29

Voting Trees

Monotonicity

Definition: A social choice correspondence S is monotonic if for any a ∈ A and
all tournaments T and T ′ on A such that:

• x � y iff x �′ y, for all x, y ∈ A with x , a and y , a, and

• a � x implies a �′ x, for all x ∈ A ,

we have a ∈ S(T) implies a ∈ S(T).

b c

a

d e

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 18 / 29

Voting Trees

Monotonicity

Definition: A social choice correspondence S is monotonic if for any a ∈ A and
all tournaments T and T ′ on A such that:

• x � y iff x �′ y, for all x, y ∈ A with x , a and y , a, and

• a � x implies a �′ x, for all x ∈ A ,

we have a ∈ S(T) implies a ∈ S(T).

b c

a

d e

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 18 / 29

Voting Trees

Failure of Monotonicity in Binary Voting Trees

a b

c

d a

b

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 19 / 29

Voting Trees

Failure of Monotonicity in Binary Voting Trees

a

c

c

b

a b

c

d

a

a c

b c

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 19 / 29

Voting Trees

Failure of Monotonicity in Binary Voting Trees

a b

c

d a

b

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 19 / 29

Voting Trees

Failure of Monotonicity in Binary Voting Trees

a

a b

c

d a

b

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 19 / 29

Voting Trees

Failure of Monotonicity in Binary Voting Trees

a

a

a b

c

d a

b

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 19 / 29

Voting Trees

Failure of Monotonicity in Binary Voting Trees

d

a

a

a b

c

d a

b

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 19 / 29

Voting Trees

Failure of Monotonicity in Binary Voting Trees

d

a

a

a b

c

d a

b c

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 19 / 29

Voting Trees

Failure of Monotonicity in Binary Voting Trees

d

a

a

a b

c

d a c

b c

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 19 / 29

Voting Trees

Failure of Monotonicity in Binary Voting Trees

d

a

a

a b

c

d

a

a c

b c

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 19 / 29

Voting Trees

Failure of Monotonicity in Binary Voting Trees

d

d

a

a

a b

c

d

a

a c

b c

c d

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 19 / 29

Voting Trees

Failure of Monotonicity in Binary Voting Trees

d

d

a

a

a b

c

d

a

a c

b c

c d

a b

dc

a b

dc

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 19 / 29

Voting Trees

The Sophisticated Agenda

Definition: For each sequence of alternatives a1, . . . , an define the
sophisticated agenda Γ∗a1,...,an

as follows:

• Γ∗a1
= (a1),

• Γ∗a1,...,an+1
= (Γ∗a1,a3,...,an+1

, Γ∗a2,a3,...,an+1
).

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 20 / 29

Voting Trees

Sophisticated Agenda

a1 a2

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 21 / 29

Voting Trees

Sophisticated Agenda

a1 a3 a2 a3

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 21 / 29

Voting Trees

Sophisticated Agenda

a1 a4 a3 a4 a2 a4 a3 a4

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 21 / 29

Voting Trees

The Banks Set and the Sophisticated Agenda

Definition: The Banks set BA(T) of a tournament T on A consists of the maximal
elements of the maximal transitive (cycle-free) subsets X of A .

Theorem: Let A = {a1, . . . , an} be a set of alternatives, Γ∗a1 ,...,am
be a sophisticated

agenda on A . Then, for all tournaments T ∈ T (A):

BA(T) = SΓ∗a1 ,...,am (T).

Proof: For T and each sequence a1, . . . , am in A define the sophisticated sequence
σT = (σT (a1), . . . , σT (am)) as:

σ(ai) =


a1 if i = 1,
ai if ai � σT (aj) for all 1 ≤ j < i,
σT (ai−1) otherwise.

Then, by induction fΓ∗am ,...,a1 (T) = σT (am). Moreover, a ∈ BA(T) if and only if
a = σT (a1, . . . , am) for some sequence a1, . . . , am. �

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 22 / 29

Voting Trees

The Banks Set and the Sophisticated Agenda

Definition: The Banks set BA(T) of a tournament T on A consists of the maximal
elements of the maximal transitive (cycle-free) subsets X of A .

Theorem: Let A = {a1, . . . , an} be a set of alternatives, Γ∗a1 ,...,am
be a sophisticated

agenda on A . Then, for all tournaments T ∈ T (A):

BA(T) = SΓ∗a1 ,...,am (T).

Proof: For T and each sequence a1, . . . , am in A define the sophisticated sequence
σT = (σT (a1), . . . , σT (am)) as:

σ(ai) =


a1 if i = 1,
ai if ai � σT (aj) for all 1 ≤ j < i,
σT (ai−1) otherwise.

Then, by induction fΓ∗am ,...,a1 (T) = σT (am). Moreover, a ∈ BA(T) if and only if
a = σT (a1, . . . , am) for some sequence a1, . . . , am. �

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 22 / 29

Voting Trees

The Banks Set and the Sophisticated Agenda

Definition: The Banks set BA(T) of a tournament T on A consists of the maximal
elements of the maximal transitive (cycle-free) subsets X of A .

Theorem: Let A = {a1, . . . , an} be a set of alternatives, Γ∗a1 ,...,am
be a sophisticated

agenda on A . Then, for all tournaments T ∈ T (A):

BA(T) = SΓ∗a1 ,...,am (T).

Proof: For T and each sequence a1, . . . , am in A define the sophisticated sequence
σT = (σT (a1), . . . , σT (am)) as:

σ(ai) =


a1 if i = 1,
ai if ai � σT (aj) for all 1 ≤ j < i,
σT (ai−1) otherwise.

Then, by induction fΓ∗am ,...,a1 (T) = σT (am). Moreover, a ∈ BA(T) if and only if
a = σT (a1, . . . , am) for some sequence a1, . . . , am. �

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 22 / 29

Voting Trees

The Copeland Set

Definition: Let T be a tournament on A and a ∈ A

• a’s Copeland score: c(a) = |{b ∈ A : a � b}| − |{b ∈ A : b � a}|

• CO(T) = arg maxa∈A c(a) = {a ∈ A : c(a) ≥ c(b) for all b ∈ A }.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 23 / 29

Voting Trees

Components and Decompositions

Definition: A subset X ⊆ A is a component of a tournament T if for all x, x′ ∈ X
and all y < X :

y � x′ iff y � x′.

A decomposition of a tournament T on A is a partition of A into components.

Definition: For X = {X1, . . . ,Xk } a decomposition of a tournament T , have T/X
denote the tournament on X such that for all X ,X ′ ∈ X :

X � X ′ in T/X iff X , X ′ and there are x ∈ X and x′ ∈ X ′ with x � x′ in T

For X a component of T we have TX = T/X where X = {{a} : a < X} ∪ {X}.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 24 / 29

Voting Trees

Components and Decompositions

Definition: A subset X ⊆ A is a component of a tournament T if for all x, x′ ∈ X
and all y < X :

y � x′ iff y � x′.

A decomposition of a tournament T on A is a partition of A into components.

Definition: For X = {X1, . . . ,Xk } a decomposition of a tournament T , have T/X
denote the tournament on X such that for all X ,X ′ ∈ X :

X � X ′ in T/X iff X , X ′ and there are x ∈ X and x′ ∈ X ′ with x � x′ in T

For X a component of T we have TX = T/X where X = {{a} : a < X} ∪ {X}.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 24 / 29

Voting Trees

Components and Decompositions

Definition: A subset X ⊆ A is a component of a tournament T if for all x, x′ ∈ X
and all y < X :

y � x′ iff y � x′.

A decomposition of a tournament T on A is a partition of A into components.

Definition: For X = {X1, . . . ,Xk } a decomposition of a tournament T , have T/X
denote the tournament on X such that for all X ,X ′ ∈ X :

X � X ′ in T/X iff X , X ′ and there are x ∈ X and x′ ∈ X ′ with x � x′ in T

For X a component of T we have TX = T/X where X = {{a} : a < X} ∪ {X}.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 24 / 29

Voting Trees

Components and Decompositions

Definition: A subset X ⊆ A is a component of a tournament T if for all x, x′ ∈ X
and all y < X :

y � x′ iff y � x′.

A decomposition of a tournament T on A is a partition of A into components.

Definition: For X = {X1, . . . ,Xk } a decomposition of a tournament T , have T/X
denote the tournament on X such that for all X ,X ′ ∈ X :

X � X ′ in T/X iff X , X ′ and there are x ∈ X and x′ ∈ X ′ with x � x′ in T

For X a component of T we have TX = T/X where X = {{a} : a < X} ∪ {X}.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 24 / 29

Voting Trees

Composition Consistency

Definition: A social choice correspondence is composition consistent whenever
for any tournament T and any decomposition X of T we have:

S(T) =
⋃

X∈S(T/X)

S(X).

Definition: A social choice correspondence is weakly composition consistent
whenever for any tournaments T and T ′ on A with X ⊆ A as a component such
that TX = T ′X we have:

• S(T)\X = S(T ′)\X and

• S(T) ∩ X , ∅ implies S(T ′) ∩ X , ∅

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 25 / 29

Voting Trees

Binary Voting Trees and Weak Composition Consistency

Theorem: For every binary voting tree Γ, SΓ is weakly composition consistent.

Proof: Let X be a component of T . Define for each binary voting tree
Γ = (V ,R , φ) the voting tree ΓX = (V ,R , φX) where:

φX (z) =

φ(z) if φ(z) < X ,
X otherwise.

Then, by induction of the reduction process both:

• Γ(T) ∈ X iff ΓX (TX) = X ,

• Γ(T) = a iff ΓX (TX) = a, for all a < X .

The theorem then follows. �

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 26 / 29

Voting Trees

Binary Voting Trees and Weak Composition Consistency

Theorem: For every binary voting tree Γ, SΓ is weakly composition consistent.

Proof: Let X be a component of T . Define for each binary voting tree
Γ = (V ,R , φ) the voting tree ΓX = (V ,R , φX) where:

φX (z) =

φ(z) if φ(z) < X ,
X otherwise.

Then, by induction of the reduction process both:

• Γ(T) ∈ X iff ΓX (TX) = X ,

• Γ(T) = a iff ΓX (TX) = a, for all a < X .

The theorem then follows. �

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 26 / 29

Voting Trees

The Copeland Solution and Binary Trees

Theorem: The Copeland solution is not composition consistent.

Corollary: There is no binary tree of which the choice function always selects a
Copeland winner, provided there are at least 8 alternatives.

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 27 / 29

Voting Trees

The Copeland Solution not Composition Consistent

z

y

x

d

e

a

b

c

z

y

x

d

e

a

b

c

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 28 / 29

Voting Trees

The Copeland Solution not Composition Consistent

z

y

x

d

e

a

b

c

z

y

x

d

e

a

b

c

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 28 / 29

Voting Trees

The Copeland Solution not Composition Consistent

z

y

x

d

e

a

b

c

z

y

x

d

e

a

b

c

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 28 / 29

Voting Trees

Summary

• Binary voting procedures and sophisticated voting

• Binary voting trees and the reduction method

• Each binary voting tree chooses from the Good set

• The Good set is computable by simple agendas

• The Banks set is computable by sophisticated agendas

• The Copeland set is not computable by binary trees

Paul Harrenstein (LMU) Voting Trees Computational Social Choice 29 / 29

	Introduction
	Binary Voting Procedures
	Voting Trees

